Abstract

Studies of fruit tree water relations often require data on water potentials of fruit. However, this is sometimes difficult because the fruit stalks are not sufficiently long for use in a pressure bomb. Also, because fruit xylem function is often lost during maturation. In the absence of significant turgor, the osmotic potential of the expressed juice is a useful proxy for a fruit’s water potential. The osmotic potential of most fleshy fruit is determined largely by the concentration of soluble carbohydrates and this can be quantified by osmometry. Soluble solids may also be quantified by refractometry. Compared with osmometry, refractometry is markedly less expensive and also much faster. Hence, it is better suited to high-throughput analyses. The objective of this study was to establish relationships between the osmotic potentials of juices expressed from sweet cherries and sour cherries, grapes and plums as determined using a vapor pressure osmometer and their soluble solids concentrations as determined using a refractometer. The data reveal close relationships within all these species. Except for plums, the relationships between species were almost identical. This is due to similarity among cultivars and species in the relative abundances of the same set of major osmolytes—i.e. the carbohydrates glucose, fructose and sorbitol and the potassium salts of the organic acids malate or tartrate. For plums, the relationship between osmotic potential and soluble solids concentration was slightly displaced. Our findings indicate osmotic potentials may be reliably predicted from soluble solids concentrations determined by refractometry.

Highlights

  • Information on fruit water potential is often needed in studies of tree water relations for example to characterize plant responses to soil water deficits [1]

  • Fruit of the sweet cherry cultivars Adriana, Bing, Burlat, Donissens Gelbe, Earlise, Early Korvic, Fabiola, Flamengo Srim, Gill Peck, Hedelfinger, Kordia, Merchant, NY242, Querfurter Konigskirsche, Rainier, Regina, Sam, Samba, Schneiders Spate Knorpel, Staccato, Sweet Georgia and Sweetheart, of the sour cherry cultivars Achat, Morellenfeuer and Ungarische Traubige, of the grape cultivars Fanny, Nero and Riesling and of the plum cultivars Bergthold, Doppelte Hauszwetsche, Hauszwetsche Wolf, Jubilaeum, Mirabelle de Nancy, Toptaste and Wangenheim were sampled in three growing seasons

  • Exceptions were the sweet cherry cultivars NY242, which was cultivated at the Esteburg research station, Jork, Osmotic potentials and refractive index of fruit juices are closely related

Read more

Summary

Introduction

Information on fruit water potential is often needed in studies of tree water relations for example to characterize plant responses to soil water deficits [1]. Fruit water potential is difficult to obtain. The most frequently-used technique, the Scholander pressure bomb, requires fruit to have sufficiently long stalks to fit through the gland in the bomb. Many fruitcrop species/cultivars do not satisfy this condition. A further requirement of the bomb method is that the xylem in the fruit and fruit stalk must be functional.

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.