Abstract

Optimal planning and heuristic search systems solve state-space searchproblems by finding a least-cost path from start to goal. As a byproduct of having an optimal path they also determine the optimal solution cost. In this paper we focus on the problem of determining the optimal solution cost for a state-space search problem directly, i.e. without actually finding a solution path of that cost. We present an efficient algorithm, BiSS, based on ideas of bidirectional search and stratified sampling that produces accurate estimates of the optimal solution cost. Our method is guaranteed to return the optimal solution cost in the limit as the sample size goes to infinity.We show empirically that our method makes accurate predictions in several domains. In addition, we show that our method scales to state spaces much larger than can be solved optimally. In particular, we estimate the average solution cost for the 6x6, 7x7, and 8x8 Sliding-Tile Puzzle and provide indirect evidence that these estimates are accurate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.