Abstract

BackgroundEarly illness course correlates with long-term outcome in psychosis. Accurate prediction could allow more focused intervention. Earlier intervention corresponds to significantly better symptomatic and functional outcomes. Our study objective is to use routinely collected baseline demographic and clinical characteristics to predict employment, education or training (EET) status, and symptom remission in patients with first episode psychosis (FEP) at one-year.Methods and findings83 FEP patients were recruited from National Health Service (NHS) Glasgow between 2011 and 2014 to a 24-month prospective cohort study with regular assessment of demographic and psychometric measures. An external independent cohort of 79 FEP patients were recruited from NHS Glasgow and Edinburgh during a 12-month study between 2006 and 2009. Elastic net regularised logistic regression models were built to predict binary EET status, period and point remission outcomes at one-year on 83 Glasgow patients (training dataset). Models were externally validated on an independent dataset of 79 patients from Glasgow and Edinburgh (validation dataset). Only baseline predictors shared across both cohorts were made available for model training and validation. After excluding participants with missing outcomes, models were built on the training dataset for EET status, period and point remission outcomes and externally validated on the validation dataset. Models predicted EET status, period and point remission with receiver operating curve (ROC) area under the curve (AUC) performances of 0.876 (95%CI: 0.864, 0.887), 0.630 (95%CI: 0.612, 0.647) and 0.652 (95%CI: 0.635, 0.670) respectively. Positive predictors of EET included baseline EET and living with spouse/children. Negative predictors included higher PANSS suspiciousness, hostility and delusions scores. Positive predictors for symptom remission included living with spouse/children, and affective symptoms on the Positive and Negative Syndrome Scale (PANSS). Negative predictors of remission included passive social withdrawal symptoms on PANSS. A key limitation of this study is the small sample size (n) relative to the number of predictors (p), whereby p approaches n. The use of elastic net regularised regression rather than ordinary least squares regression helped circumvent this difficulty. Further, we did not have information for biological and additional social variables, such as nicotine dependence, which observational studies have linked to outcomes in psychosis.Conclusions and relevanceUsing advanced statistical machine learning techniques, we provide the first externally validated evidence, in a temporally and geographically independent cohort, for the ability to predict one-year EET status and symptom remission in individual FEP patients.

Highlights

  • Using advanced statistical machine learning techniques, we provide the first externally validated evidence, in a temporally and geographically independent cohort, for the ability to predict one-year EET status and symptom remission in individual first episode psychosis (FEP) patients

  • Initial clinical presentation and early illness course correlates with long term outcome in first episode psychosis (FEP).[1]

  • All three models’ ROCAUC and 95%CI were significantly better than chance

Read more

Summary

Introduction

Initial clinical presentation and early illness course correlates with long term outcome in first episode psychosis (FEP).[1] The ability to accurately predict outcome at an individual level would allow more focussed intervention. Its onset triggers a precipitous decline in education and employment. Missing out on such vocational opportunities, as enshrined in Article 23 of the Universal Declaration of Human Rights[5], impairs financial independence and societal inclusion, the forming of relationships and self-actualisation.[6]. Our study objective is to use routinely collected baseline demographic and clinical characteristics to predict employment, education or training (EET) status, and symptom remission in patients with first episode psychosis (FEP) at one-year

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.