Abstract

Blind predictions of octanol/water partition coefficients and pKa at 298.15 K for 22 drug-like compounds were made for the SAMPL7 challenge. Octanol/water partition coefficients were predicted from solvation free energies computed using electronic structure calculations with the SM12, SM8 and SMD solvation models. Within these calculations we compared the use of gas- and solution-phase optimized geometries of the solute. Based on these calculations we found that in general the use of solution phase-optimized geometries increases the affinity of the solutes for water as compared to octanol, with the use of gas-phase optimized geometries resulting in the better agreement with experiment. The pKa is computed using the direct approach, scaled solvent-accessible surface model, and the inclusion of an explicit water molecule, where the latter two methods have previously been shown to offer improved predictions as compared to the direct approach. We find that the use of an explicit water molecule provides superior predictions, and that the predicted macroscopic pKa is sensitive to the employed microstates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.