Abstract
The standard method for measuring the octane number of fuels requires large sample volumes ( ∼ 1L) and access to a Cooperative Fuel Research (CFR) engine. This method reliably quantifies the knock resistance of fuels in spark ignition engines, however the large sample volume requirement prevents testing of new experimental fuels (often produced in quantities of just ∼ 1 mL), and the large equipment size impedes mobile, decentralized testing of remote fuel supplies. When direct measurements of octane number are impractical, other methods are needed. Micro flow reactors have shown promise in measuring ignition characteristics that are sensitive to octane number, and they are compact and operate on small volumes ( ∼ 1 mL). This study uses simulations to demonstrate that measurements of the unsteady flame dynamics in a micro flow reactor can provide valuable data for accurate octane number predictions. Simulations of the flow reactor are used to obtain ignition characteristics for over 200 ethanol-toluene primary reference fuels (ETPRF) and 21 biofuel blends. A feed forward neural network is trained using the micro flow reactor ignition characteristics, fuel properties, and known research octane number (RON) and motor octane number (MON) for the ETPRF fuels. The neural network is able to predict the RON and MON of the biofuel blends to within 2 octane number on average. Prediction results are compared to other methods available in the literature. Additional neural network models are trained that show improved prediction accuracy as additional fuel training data becomes available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.