Abstract
Non-Markovian noise presents a particularly relevant challenge in understanding and combating decoherence in quantum computers, yet is challenging to capture in terms of simple models. Here we show that a simple phenomenological dynamical model known as the post-Markovian master equation (PMME) accurately captures and predicts non-Markovian noise in a superconducting qubit system. The PMME is constructed using experimentally measured state dynamics of an IBM Quantum Experience cloud-based quantum processor, and the model thus constructed successfully predicts the non-Markovian dynamics observed in later experiments. The model also allows the extraction of information about crosstalk and measures of non-Markovianity. We demonstrate definitively that the PMME model predicts subsequent dynamics of the processor better than the standard Markovian master equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.