Abstract
Experimental drug development is costly, complex, and time-consuming, and the number of drugs that have been put into application treatment is small. The identification of drug-disease correlations can provide important information for drug discovery and drug repurposing. Computational drug repurposing is an important and effective method that can be used to determine novel treatments for diseases. In recent years, an increasing number of large databases have been utilized for biological data research, particularly in the fields of drugs and diseases. Consequently, researchers have begun to explore the application of deep neural networks in biological data development. One particularly promising method for unsupervised learning is the deep generative model, with the variational autoencoder (VAE) being among the mainstream models. Here, we propose a drug indication prediction algorithm called DIDVAE (predicting new drug indications based on double variational autoencoders), which generates new data by learning the latent variable distribution of known data to achieve the goal of predicting drug-disease associations. In the experiment, we compared the DIDVAE algorithm with the BBNR, DrugNet, MBiRW and DRRS algorithms on a unified dataset. The comprehensive experimental results show that, compared with these prediction algorithms, the DIDVAE algorithm provides an overall improved prediction. In addition, further analysis and verification of the predicted unknown drug-disease association also proved the practicality of the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.