Abstract
There is a lack of reliable tools used to predict functional recovery in unresponsive patients following a severe brain injury. The objective of the study is to evaluate the prognostic utility of resting-state functional magnetic resonance imaging for predicting good neurologic recovery in unresponsive patients with severe brain injury in the intensive-care unit. Each patient underwent a 5.5-min resting-state scan and ten resting-state networks were extracted via independent component analysis. The Glasgow Outcome Scale was used to classify patients into good and poor outcome groups. The Nearest Centroid classifier used each patient's ten resting-state network values to predict best neurologic outcome within 6months post-injury. Of the 25 patients enrolled (mean age = 43.68, range = [19-69]; GCS ≤ 9; 6 females), 10 had good and 15 had poor outcome. The classifier correctly and confidently predicted 8/10 patients with good and 12/15 patients with poor outcome (mean = 0.793, CI = [0.700, 0.886], Z = 2.843, p = 0.002). The prediction performance was largely determined by three visual (medial: Z = 3.11, p = 0.002; occipital pole: Z = 2.44, p = 0.015; lateral: Z = 2.85, p = 0.004) and the left frontoparietal network (Z = 2.179, p = 0.029). Our approach correctly identified good functional outcome with higher sensitivity (80%) than traditional prognostic measures. By revealing preserved networks in the absence of discernible behavioral signs, functional connectivity may aid in the prognostic process and affect the outcome of discussions surrounding withdrawal of life-sustaining measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.