Abstract

Identifying suitable patterns in complex biological interaction networks helps understanding network functions and allows for predictions at the pattern level: by recognizing a known pattern, one can assign its previously established function. However, current approaches fail for previously unseen patterns, when patterns overlap and when they are embedded into a new network context. Here we show how to conceptually extend pattern-based approaches. We define metabolite patterns in metabolic networks that formalize co-occurrences of metabolites. Our probabilistic framework decodes the implicit information in the networks' metabolite patterns to predict metabolic functions. We demonstrate the predictive power by identifying 'indicator patterns', for instance, for enzyme classification, by predicting directions of novel reactions and of known reactions in new network contexts, and by ranking candidate network extensions for gap filling. Beyond their use in improving genome annotations and metabolic network models, we expect that the concepts transfer to other network types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.