Abstract

The purpose of this study was to develop and train a Neural Network (NN) that uses barbell mass and motions to predict hip, knee, and ankle Net Joint Moments (NJM) during a weightlifting exercise. Seven weightlifters performed two cleans at 85% of their competition maximum while ground reaction forces and 3-D motion data were recorded. An inverse dynamics procedure was used to calculate hip, knee, and ankle NJM. Vertical and horizontal barbell motion data were extracted and, along with barbell mass, used as inputs to a NN. The NN was then trained to model the association between the mass and kinematics of the barbell and the calculated NJM for six weightlifters, the data from the remaining weightlifter was then used to test the performance of the NN – this was repeated 7 times with a k-fold cross-validation procedure to assess the NN accuracy. Joint-specific predictions of NJM produced coefficients of determination (r2) that ranged from 0.79 to 0.95, and the percent difference between NN-predicted and inverse dynamics calculated peak NJM ranged between 5% and 16%. The NN was thus able to predict the spatiotemporal patterns and discrete peaks of the three NJM with reasonable accuracy, which suggests that it is feasible to predict lower extremity NJM from the mass and kinematics of the barbell. Future work is needed to determine whether combining a NN model with low cost technology (e.g., digital video and free digitising software) can also be used to predict NJM of weightlifters during field-testing situations, such as practice and competition, with comparable accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.