Abstract

Wave shapes that induce velocity skewness and acceleration asymmetry are usually responsible for onshore sediment transport, whereas undertow and bottom slope effect normally contribute to offshore sediment transport. By incorporating these counteracting driving forces in a phase-averaged manner, the theoretically-based quasi-steady formula of Wang (2007) is modified to predict the magnitude and direction of net cross-shore total load transport under the coaction of wave and current. The predictions show an excellent agreement with the measurement data on medium and fine sand collected by Dohmen-Janssen and Hanes (2002) and Schretlen (2012) in a full-scale wave flume at the Coastal Research Centre in Hannover, Germany. The modified formula can predict the net onshore transport of fine sand in sheet flows. In particular, it can predict the net offshore transport of medium sand in rippled beds through enlarged bed roughness, as well as the net offshore transport of fine-to-coarse sand in sheet flows with the aid of a new criterion to judge the occurrence of net offshore transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call