Abstract
AbstractUnderstanding effects of climate change on nitrogen fate and transport in the environment is critical to nutrient management. We used climate projections within a previously calibrated spatially referenced regression (SPARROW) model to predict effects of expected climate change over 1995 through 2025 on total nitrogen fluxes to Chesapeake Bay and in watershed streams. Assuming nitrogen inputs and other watershed conditions remain at 2012 levels, effects of increasing temperature, runoff, streamflow, and stream velocity expected between 1995 and 2025 will include an estimated net 6.5% decline in annual nitrogen delivery to the bay from its watershed. This predicted decline is attributable to declines in the delivery of nitrogen from upland nonpoint sources to streams due to predicted warmer temperatures. Such temperature‐driven declines in the delivery of nitrogen to streams more than offset predicted increased delivery to and within streams due to increased runoff and streamflow and may be attributable to increasing rates of denitrification or ammonia volatilization or to changes in plant phenology. Predicted climate‐driven declines in nitrogen flux are generally similar across the watershed but vary slightly among major nonpoint source sectors and tributary watersheds. Nitrogen contributions to the bay from point sources are not affected by temperature‐driven changes in delivery from uplands and are therefore predicted to increase slightly between 1995 and 2025.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JAWRA Journal of the American Water Resources Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.