Abstract

The ambiguity of diverse functions of sustainable flood retention basins (SFRBs) may lead to conflict and risk in water resources planning and management. How can someone provide an intuitive yet efficient strategy to uncover and distinguish the multiple potential functions of SFRBs under uncertainty? In this study, by exploiting both input and output uncertainties of SFRBs, the authors developed a new data-driven framework to automatically predict the multiple functions of SFRBs by using multi-instance multi-label (MIML) learning. A total of 372 sustainable flood retention basins, characterized by 40 variables associated with confidence levels, were surveyed in Scotland, UK. A Gaussian model with Monte Carlo sampling was used to capture the variability of variables (i.e., input uncertainty), and the MIML-support vector machine (SVM) algorithm was subsequently applied to predict the potential functions of SFRBs that have not yet been assessed, allowing for one basin belonging to different types (i.e., output uncertainty). Experiments demonstrated that the proposed approach enables effective automatic prediction of the potential functions of SFRBs (e.g., accuracy >93%). The findings suggest that the functional uncertainty of SFRBs under investigation can be better assessed in a more comprehensive and cost-effective way, and the proposed data-driven approach provides a promising method of doing so for water resources management.

Highlights

  • There is a wide range of natural watercourses and traditional engineering solutions that can be applied for flood protection in urban and rural areas, such as barriers and dykes

  • The objective of this study is to identify potential multiple functions of water bodies under uncertainty by using multi-instance multi-label learning

  • To assess the functions of a large number of sustainable flood retention basins (SFRBs) in a relatively short time period with a limited number of experts is a challenge for water resources managers and planners

Read more

Summary

Introduction

There is a wide range of natural watercourses and traditional engineering solutions that can be applied for flood protection in urban and rural areas, such as barriers and dykes. The concept of sustainability has recently been introduced to flood defenses [1]. An SFRB is internationally defined as a natural or artificial impoundment or integrated wetland, which has a pre-defined or potential role in flood defense and diffuse pollution control that can be accomplished cost-effectively through best management practices, achieving sustainable flood risk management and enhancing sustainable drainage, pollution reduction, biodiversity, green space, and recreational opportunities for society [4]. Different SFRBs usually perform diverse functions such as flood control, irrigation, drinking water supply and electricity generation. Ambiguity between these functions may lead to conflict or risk for decision-makers in charge of water resources management and planning

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.