Abstract
Mild cognitive impairment (MCI) in older adults is potentially devastating, but an accurate prediction model is still lacking. We hypothesized that neuropsychological tests and MRI-related markers could predict the onset of MCI early. We analyzed data from 306 older adults who were cognitive normal (CN) attending the Alzheimer's Disease Neuroimaging Initiative sequentially (474 pairs of visits) within 3 years. There were 231 pairs of MCI conversion (CN to MCI), and 242 pairs of CN maintenance (CN to CN). Variables on demographic, neuropsychological tests, genetic, and MRI-related markers were collected. Machine learning was used to construct MCI prediction models, comparing the area under the receiver operating characteristic curve (AUC) as the primary metric of performance. Important predictors were ranked for the optimal model. The baseline age of the study sample was 74.8 years old. The best-performing model (gradient boosting decision tree) with 13 variables predicted MCI with an AUC of 0.819, and the rank of variable importance showed that intracranial volume, hippocampal volume, and score from task 4 (word recognition) of the Alzheimer's Disease Assessment Scale were important predictors of MCI. With the help of machine learning, fewer neuropsychological tests and MRI-related markers are required to accurately predict MCI within 3 years, thereby facilitating targeted intervention. Geriatr Gerontol Int 2024; 24: 96-101.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.