Abstract

Predicting the associations between human microbes and drugs (MDAs) is one critical step in drug development and precision medicine areas. Since discovering these associations through wet experiments is time-consuming and labor-intensive, computational methods have already been an effective way to tackle this problem. Recently, graph contrastive learning (GCL) approaches have shown great advantages in learning the embeddings of nodes from heterogeneous biological graphs (HBGs). However, most GCL-based approaches don't fully capture the rich structure information in HBGs. Besides, fewer MDA prediction methods could screen out the most informative negative samples for effectively training the classifier. Therefore, it still needs to improve the accuracy of MDA predictions. In this study, we propose a novel approach that employs the Structure-enhanced Contrastive learning and Self-paced negative sampling strategy for Microbe-Drug Association predictions (SCSMDA). Firstly, SCSMDA constructs the similarity networks of microbes and drugs, as well as their different meta-path-induced networks. Then SCSMDA employs the representations of microbes and drugs learned from meta-path-induced networks to enhance their embeddings learned from the similarity networks by the contrastive learning strategy. After that, we adopt the self-paced negative sampling strategy to select the most informative negative samples to train the MLP classifier. Lastly, SCSMDA predicts the potential microbe-drug associations with the trained MLP classifier. The embeddings of microbes and drugs learning from the similarity networks are enhanced with the contrastive learning strategy, which could obtain their discriminative representations. Extensive results on three public datasets indicate that SCSMDA significantly outperforms other baseline methods on the MDA prediction task. Case studies for two common drugs could further demonstrate the effectiveness of SCSMDA in finding novel MDA associations. The source code is publicly available on GitHub https://github.com/Yue-Yuu/SCSMDA-master.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call