Abstract
Metallophores are small molecule chelators that many microbes use to obtain trace metals from their environment. Through genome mining, where genomes are scanned for metallophore biosynthesis genes, one can not only identify which organisms are likely to produce a metallophore, but also predict the metallophore structure, thus preventing undesired reisolation of known compounds and accelerating characterization. Furthermore, the presence of accessory genes for the transport, utilization, and regulation can suggest the biological function and fate of a metallophore. Modern, user-friendly tools have made powerful genomic analyses accessible to scientists with no bioinformatics experience, but these tools are often not utilized to their full potential. This chapter provides an introduction to metallophore genomics and demonstrates how to use the free, publicly available antiSMASH platform to infer metallophore function and structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.