Abstract
The type information of un-annotated membrane proteins provides an important hint for their biological functions. The experimental determination of membrane protein types, despite being more accurate and reliable, is not always feasible due to the costly laboratory procedures, thereby creating a need for the development of bioinformatics methods. This article describes a novel computational classifier for the prediction of membrane protein types using proteins’ sequences. The classifier, comprising a collection of one-versus-one support vector machines, makes use of the following sequence attributes: (1) the cationic patch sizes, the orientation, and the topology of transmembrane segments; (2) the amino acid physicochemical properties; (3) the presence of signal peptides or anchors; and (4) the specific protein motifs. A new voting scheme was implemented to cope with the multi-class prediction. Both the training and the testing sequences were collected from SwissProt. Homologous proteins were removed such that there is no pair of sequences left in the datasets with a sequence identity higher than 40%. The performance of the classifier was evaluated by a Jackknife cross-validation and an independent testing experiments. Results show that the proposed classifier outperforms earlier predictors in prediction accuracy in seven of the eight membrane protein types. The overall accuracy was increased from 78.3% to 88.2%. Unlike earlier approaches which largely depend on position-specific substitution matrices and amino acid compositions, most of the sequence attributes implemented in the proposed classifier have supported literature evidences. The classifier has been deployed as a web server and can be accessed at http://bsaltools.ym.edu.tw/predmpt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.