Abstract

In this work we make predictions of several important molecular properties of academic and industrial importance to seek answers to two questions: 1) Can we apply efficient machine learning techniques, using inexpensive descriptors, to predict melting points to a reasonable level of accuracy? 2) Can values of this level of accuracy be usefully applied to predicting aqueous solubility? We present predictions of melting points made by several novel machine learning models, previously applied to solubility prediction. Additionally, we make predictions of solubility via the General Solubility Equation (GSE) and monitor the impact of varying the logP prediction model (AlogP and XlogP) on the GSE. We note that the machine learning models presented, using a modest number of 2D descriptors, can make melting point predictions in line with the current state of the art prediction methods (RMSE≥40 °C). We also find that predicted melting points, with an RMSE of tens of degrees Celsius, can be usefully applied to the GSE to yield accurate solubility predictions (log10 S RMSE<1) over a small dataset of drug-like molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.