Abstract

Recent studies have investigated the influence of Iraqi stabilizer materials on the stability of artificially lead-contaminated soil. Prior research has not been able to predict the non-linear erodibility model (Wilson model) of mechanistic parameters (b0 and b1) from jet erosion tests (JETs) due to lead-contaminated soil treated with different stabilizers. The aims of this research are to 1) mathematically evaluate the detachment parameters (b0 and b1) of the Wilson model from JETs of lead-contaminated soil samples treated with different percentages of three common Iraqi stabilizers (lime, cement, and bitumen) at different curing times (24 hrs, 72 hrs, and 168 hrs), and 2) to develop relationships between the parameters, b0 and b1, in addition to the physical and chemical soil characteristics. JETs are utilized to determine the mechanistic erodibility parameters b0 and b1 from observed scour data of packed contaminated soils at optimum soil moisture level. The results show that observed scour depths are reduced for treated lead-contaminated soils in JET experiments. The observed b1 values increased at different curing times, while a significant reduction in b0 is observed. The proposed formulas are able to mathematically predict the influence of different stabilizers on the mechanistic erodibility parameters (b0 and b1) of treated contaminated soils with a prior JET experiment based on stabilizer coefficients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call