Abstract
In this study, we aimed to predict mechanical ventilation requirement and mortality using computational modeling of chest radiographs (CXRs) for coronavirus disease 2019 (COVID-19) patients. This two-center, retrospective study analyzed 530 deidentified CXRs from 515 COVID-19 patients treated at Stony Brook University Hospital and Newark Beth Israel Medical Center between March and August 2020. Linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and random forest (RF) machine learning classifiers to predict mechanical ventilation requirement and mortality were trained and evaluated using radiomic features extracted from patients’ CXRs. Deep learning (DL) approaches were also explored for the clinical outcome prediction task and a novel radiomic embedding framework was introduced. All results are compared against radiologist grading of CXRs (zone-wise expert severity scores). Radiomic classification models had mean area under the receiver operating characteristic curve (mAUCs) of 0.78 ± 0.05 (sensitivity = 0.72 ± 0.07, specificity = 0.72 ± 0.06) and 0.78 ± 0.06 (sensitivity = 0.70 ± 0.09, specificity = 0.73 ± 0.09), compared with expert scores mAUCs of 0.75 ± 0.02 (sensitivity = 0.67 ± 0.08, specificity = 0.69 ± 0.07) and 0.79 ± 0.05 (sensitivity = 0.69 ± 0.08, specificity = 0.76 ± 0.08) for mechanical ventilation requirement and mortality prediction, respectively. Classifiers using both expert severity scores and radiomic features for mechanical ventilation (mAUC = 0.79 ± 0.04, sensitivity = 0.71 ± 0.06, specificity = 0.71 ± 0.08) and mortality (mAUC = 0.83 ± 0.04, sensitivity = 0.79 ± 0.07, specificity = 0.74 ± 0.09) demonstrated improvement over either artificial intelligence or radiologist interpretation alone. Our results also suggest instances in which the inclusion of radiomic features in DL improves model predictions over DL alone. The models proposed in this study and the prognostic information they provide might aid physician decision making and efficient resource allocation during the COVID-19 pandemic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.