Abstract
Many traders participate in activities known as "day-trading", trading Bitcoin against the dollar bill as the United States Dollar (USD) on very short timeframes to squeeze out profits from small market fluctuations. This paper aims to help traders decide how to best act by creating a model that can predict price movement's direction for the next 5-min time frame. Several machine-learning models have been tested for this Up/Down binary-classification problem. In this paper, we provide a comparison of the state-of-art strategies in predicting the movement direction for bitcoin, including Random Guessing and a Momentum-Based Strategy. The tested models include Autoregressive Integrated Moving Average (ARIMA), Prophet (by Facebook), Random Forest, Random Forest Lagged-Auto-Regression, and Multi-Layer Perceptron (MLP) Neural Networks. The MLP deep neural network has achieved the highest accuracy of 54% compared to other time-series prediction models. Also, in this paper, various data transformation and feature engineering have been applied in the comparison.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.