Abstract

Maize is a key crop contributing to food security in Southern Africa yet accurate estimates of maize yield prior to harvesting are scarce. Timely and accurate estimates of maize production are essential for ensuring food security by enabling actionable mitigation strategies and policies for prevention of food shortages. In this study, we regressed the number of dry dekads derived from VCI against official ground-based maize yield estimates to generate simple linear regression models for predicting maize yield throughout Zimbabwe over four seasons (2009–10, 2010–11, 2011–12, and 2012–13). The VCI was computed using Normalized Difference Vegetation Index (NDVI) time series dataset from the SPOT VEGETATION sensor for the period 1998–2013. A significant negative linear relationship between number of dry dekads and maize yield was observed in each season. The variation in yield explained by the models ranged from 75% to 90%. The models were evaluated with official ground-based yield data that was not used to generate the models. There is a close match between the predicted yield and the official yield statistics with an error of 33%. The observed consistency in the negative relationship between number of dry dekads and ground-based estimates of maize yield as well as the high explanatory power of the regression models suggest that VCI-derived dry dekads could be used to predict maize yield before the end of the season thereby making it possible to plan strategies for dealing with food deficits or surpluses on time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.