Abstract

With the implementation of the Basel II regulatory framework, it became increasingly important for financial institutions to develop accurate loss models. This work investigates the loss given default (LGD) of mortgage loans using a large set of recovery data of residential mortgage defaults from a major UK bank. A Probability of Repossession Model and a Haircut Model are developed and then combined to give an expected loss percentage. We find that the Probability of Repossession Model should consist of more than just the commonly used loan-to-value ratio, and that the estimation of LGD benefits from the Haircut Model, which predicts the discount which the sale price of a repossessed property may undergo. This two-stage LGD model is shown to perform better than a single-stage LGD model (which models LGD directly from loan and collateral characteristics), as it achieves a better R2 value and matches the distribution of the observed LGD more accurately.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.