Abstract

In this work, deep convolutional neural networks (CNNs) are used to speed up the calculation of spatial nonuniform device parameters, voltage and fill factor (FF) losses in crystalline Si solar cells. Luminescence images on finished solar cells, specifically as‐measured electroluminescence (EL) and photoluminescence (PL) images, are used as input features to train the CNN models and losses analysis as output is from a finite‐element modeling program called Griddler. From the analysis of a small dataset of 250 commercial grade solar cells, the CNN models are able to predict the spatially nonuniform distribution of contact resistance and defect parameters of the devices under test and exhibit good performance in the inference of voltage and FF losses. As EL and PL images are widely collected in‐line production data, in the result, the possibility of deploying 2D spatial power loss analysis is implied as a fast, in‐line, and nondestructive analytic tool for solar cells manufacturing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.