Abstract

The CQESTR model is a process-based C model recently developed to simulate soil organic matter (SOM) dynamics and uses readily available or easily measurable input parameters. The current version of CQESTR (v. 2.0) has been validated successfully with a number of datasets from agricultural sites in North America but still needs to be tested in other geographic areas and soil types under diverse organic management systems. We evaluated the predictive performance of CQESTR to simulate long-term (34 years) soil organic C (SOC) changes in a SOM-depleted European soil either unamended or amended with solid manure, liquid manure, or crop residue. Measured SOC levels declined over the study period in the unamended soil, remained constant in the soil amended with crop residues, and tended to increase in the soils amended with manure, especially with solid manure. Linear regression analysis of measured SOC contents and CQESTR predictions resulted in a correlation coefficient of 0.626 (P < 0.001) and a slope and an intercept not significantly different from 1 and 0, respectively (95% confidence level). The mean squared deviation and root mean square error were relatively small. Simulated values fell within the 95% confidence interval of the measured SOC, and predicted errors were mainly associated with data scattering. The CQESTR model was shown to predict, with a reasonable degree of accuracy, the organic C dynamics in the soils examined. The CQESTR performance, however, could be improved by adding an additional parameter to differentiate between pre-decomposed organic amendments with varying degrees of stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.