Abstract

Aim: To predict base-resolution DNA methylation in cancerous and paracancerous tissues. Material & methods: Wecollected six cancer DNA methylation datasets from The Cancer Genome Atlas and five cancer datasets from Gene Expression Omnibus and established machine learning models using paired cancerous and paracancerous tissues. Tenfold cross-validation and independent validation were performed to demonstrate the effectiveness of the proposed method. Results: The developed cross-tissue prediction models can substantially increase the accuracy at more than 68% of CpG sites and contribute to enhancing the statistical power of differential methylation analyses. An XGBoost model leveraging multiple correlating CpGs may elevate the prediction accuracy. Conclusion: This study provides a powerful tool for DNA methylation analysis and has the potential to gain new insights into cancer research from epigenetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.