Abstract

Abstract A number of alloys, including stainless steels, aluminum, and nickel-based alloys, are used in seawater for various applications. The localized corrosion of these materials is affected, among other factors, by temperature, microbial activity, chlorination, and flow rate. A predictive model, based on the calculation of repassivation and corrosion potentials, is presented and compared to field experiences of these alloys in seawater systems. An empirical model is used for calculating the repassivation potential of these alloys as a function of seawater composition. A mechanistic model is used for calculating the corrosion potential as a function of oxygen and chlorine concentrations. The parameters for the corrosion potential are derived from tests in flowing natural seawater or synthetic seawater. The model calculations agree with the relative ranking of these alloys in seawater. Limitations of the current model and improvements are suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.