Abstract

Dynamic data, cache, and memory adaptation can significantly improve program performance when they are applied on long continuous phases of execution that have dynamic but predictable locality. To support phase-based adaptation, this paper defines the concept of locality phases and describes a four-component analysis technique. Locality-based phase detection uses locality analysis and signal processing techniques to identify phases from the data access trace of a program; frequency-based phase marking inserts code markers that mark phases in all executions of the program; phase hierarchy construction identifies the structure of multiple phases; and phase-sequence prediction predicts the phase sequence from program input parameters. The paper shows the accuracy and the granularity of phase and phase-sequence prediction as well as its uses in dynamic data packing, memory remapping, and cache resizing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.