Abstract

Since protein 3D structure prediction is very important for biochemical study and drug design, researchers have developed many machine learning algorithms to predict protein 3D structures using the sequence information only. Understanding the sequence-to-structure relationship is key for the successful structure prediction. Previous approaches including the single shallow learning model, the single deep learning model and clustering algorithms all have disadvantages to understand precise sequence-to-structure relationship. In order to further improve the performance of the local protein structure prediction, a novel deep learning model called Clustering Recurrent Neural Network (CRNN) is proposed. In this model, the whole protein dataset is divided into multiple cluster subtrees. A RNN is trained for each cluster in the subtrees so that each RNN can be used to learn the computationally simpler local sequence-to-structure relationship instead of attempting to capture the global sequence-to-structure relationship. After learning the local sequence-to-structure relationship using RNN, CRNN is designed to predict distance matrices, torsion angles and secondary structures for backbone α-carbon atoms of protein sequence segments. Our experimental analysis indicates that 3D structure prediction accuracy is comparable or better than other state-of-art approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.