Abstract

We present a new computational method for predicting ligand binding residues and functional sites in protein sequences. These residues and sites tend to be not only conserved, but also exhibit strong correlation due to the selection pressure during evolution in order to maintain the required structure and/or function. To explore the effect of correlations among multiple positions in the sequences, the method uses graph theoretic clustering and kernel-based canonical correlation analysis (kCCA) to identify binding and functional sites in protein sequences as the residues that exhibit strong correlation between the residues’ evolutionary characterization at the sites and the structure-based functional classification of the proteins in the context of a functional family. The results of testing the method on two well-curated data sets show that the prediction accuracy as measured by Receiver Operating Characteristic (ROC) scores improves significantly when multipositional correlations are accounted for.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.