Abstract
A linear solvation energy relationship (LSER) was developed to predict the partitioning of neutral chemicals from polysorbate 80 (PS 80) micelles to water. Predicted partition coefficients were converted to a concentration dependent solubilization strength of aqueous PS 80 solutions. This solubilization strength represents a key parameter to project equilibrium levels of leaching from pharmaceutical plastic materials. To construct the LSER model equation, partition coefficients between PS 80 micelles and water were measured via a reference phase method or collected from the literature. Multiple linear regression of partition coefficients against five publicly available solute parameters was used to obtain the LSER system parameters. 112 chemically diverse compounds were incorporated for LSER model regression. The model equation shows a very good fit (R2 = 0.969, SD = 0.219) for the entire dataset. The accuracy of the multi-parameter LSER model was proven to be substantially better in comparison to a single-parameter log-linear model based on the octanol-water partition coefficient. PS 80 solubilization strength in water can expediently and accurately be calculated for neutral organic compounds with the proposed LSER model. LSER system parameters provide insightful chemical information with respect to solubilization in aqueous solutions of PS 80.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.