Abstract

Given a random sample of sales transaction records (i.e., scanner panels) for a particular period (such as a week, month, quarter, etc.), we analyze the scanner panels to determine approximations for the penetration and purchase frequency distribution of frequently purchased items and itemsets. If the purchase frequency distribution for an item or itemset in the current period can be modeled by the negative binomial distribution, then the parameters of the model are used to predict sales profiles for the next period. We present representative experimental results based upon synthetic data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.