Abstract
All-solid-state batteries (ASSBs) are the important attributes of the forthcoming technologies for electrochemical energy storage. A key element of ASSBs is the solid electrolyte materials. Garnets are considered promising candidates for solid electrolytes of ASSBs due to their chemical stability with Li metal anodes, reasonable kinetic characteristics (σLi∼ 10−3–10−4 S · cm−1) and a wide electrochemical window. This study is aimed at the analysis of the experimental data available for garnet thin films, examining the ionic conductivity through the film/substrate lattice mismatch, the elastic properties and the difference in the thermal expansion characteristics of the film and the substrate, the deposition temperature of the film, and the melting point and the dielectric constant of the substrate. Based on the results of this analysis and by introducing the corresponding characteristics involved as the descriptors, the quantitative models for predicting the ionic conductivity values were developed. Some important characteristic features for ion transport in garnet films, which are primarily concerned with the film/substrate misfit, elastic properties, deposition temperature, cation segregation and the space charge effects, are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.