Abstract

ObjectiveFor patients in the Intensive Care Unit (ICU), the timing of intubation has a significant association with patients' outcomes. However, accurate prediction of the timing of intubation remains an unsolved challenge due to the noisy, sparse, heterogeneous, and unbalanced nature of ICU data. In this study, our objective is to develop a workflow for pre-processing ICU data and to develop a customized deep learning model to predict the need for intubation. MethodsTo improve the prediction accuracy, we transform the intubation prediction task into a time series classification task. We carefully design a sequence of data pre-processing steps to handle the multimodal noisy data. Firstly, we discretize the sequential data and address missing data using interpolation. Next, we employ a sampling strategy to address data imbalance and standardize the data to facilitate faster model convergence. Furthermore, we employ the feature selection technique and propose an ensemble model to combine features learned by different deep learning models. ResultsThe performance is evaluated on Medical Information Mart for Intensive Care (MIMIC)-III, an ICU dataset. Our proposed Deep Feature Fusion method achieves an area under the curve (AUC) of the receiver operating curve (ROC) of 0.8953, surpassing the performance of other deep learning and traditional machine learning models. ConclusionOur proposed Deep Feature Fusion method proves to be a viable approach for predicting intubation and outperforms other deep learning and classical machine learning models. The study confirms that high-frequency time-varying indicators, particularly Mean Blood Pressure (MeanBP) and peripheral oxygen saturation (SpO2), are significant risk factors for predicting intubation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call