Abstract

CDK2 plays a pivotal role in controlling the progression of the cell cycle and is a target for anticancer drugs. The last 30 years of structural studies focused on CDK2 provided the basis for understanding its inhibition and furnished the data to develop machine-learning models to study intermolecular interactions. This review addresses the application of computational models to estimate the inhibition of CDK2. It focuses on machine-learning models developed to predict binding affinity against CDK2 using the program SAnDReS. A search of previously published articles on PubMed showed machine-learning models built to evaluate CDK2 inhibition. BindingDB information for CDK2 furnished the data to generate updated machine-learning models to predict the inhibition of this enzyme. The application of SAnDReS to model CDK2-inhibitor interactions showed that this approach can build machine-learning models with superior predictive performance compared with classical and deep-learning scoring functions. Also, the innovative DOME analysis of the predictive performance of machine learning and universal scoring function indicates that this method is adequate to select computational models to address protein-ligand interactions. The available structural and functional data about CDK2 is a rich source of information to build machine-learning models to predict the inhibition of this protein target. SAnDReS can build superior models to predict pKi and outperform universal scoring functions, including one developed using deep learning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.