Abstract

BackgroundRT-PCR has become the primary method to diagnose viral diseases, including SARS-CoV-2. RT-PCR detects RNA, not infectious virus, thus its ability to determine duration of infectivity of patients is limited. Infectivity is a critical determinant in informing public health guidelines/interventions. Our goal was to determine the relationship between E gene SARS-CoV-2 RT-PCR cycle threshold (Ct) values from respiratory samples, symptom onset to test (STT) and infectivity in cell culture.MethodsIn this retrospective cross-sectional study, we took SARS-CoV-2 RT-PCR confirmed positive samples and determined their ability to infect Vero cell lines.ResultsNinety RT-PCR SARS-CoV-2 positive samples were incubated on Vero cells. Twenty-six samples (28.9%) demonstrated viral growth. Median TCID50/ml was 1780 (282-8511). There was no growth in samples with a Ct > 24 or STT > 8 days. Multivariate logistic regression using positive viral culture as a binary predictor variable, STT and Ct demonstrated an odds ratio for positive viral culture of 0.64 (95% CI 0.49-0.84, p<0.001) for every one unit increase in Ct. Area under the receiver operating characteristic curve for Ct vs. positive culture was OR 0.91 (95% CI 0.85-0.97, p<0.001), with 97% specificity obtained at a Ct of >24.ConclusionsSARS-CoV-2 Vero cell infectivity was only observed for RT-PCR Ct < 24 and STT < 8 days. Infectivity of patients with Ct >24 and duration of symptoms >8 days may be low. This information can inform public health policy and guide clinical, infection control and occupational health decisions. Further studies of larger size are needed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call