Abstract

Current methods for assessing individual well-being in team collaboration at the workplace often rely on manually collected surveys. This limits continuous real-world data collection and proactive measures to improve team member workplace satisfaction. We propose a method to automatically derive social signals related to individual well-being in team collaboration from raw audio and video data collected in teamwork contexts. The goal was to develop computational methods and measurements to facilitate the mirroring of individuals’ well-being to themselves. We focus on how speech behavior is perceived by team members to improve their well-being. Our main contribution is the assembly of an integrated toolchain to perform multi-modal extraction of robust speech features in noisy field settings and to explore which features are predictors of self-reported satisfaction scores. We applied the toolchain to a case study, where we collected videos of 20 teams with 56 participants collaborating over a four-day period in a team project in an educational environment. Our audiovisual speaker diarization extracted individual speech features from a noisy environment. As the dependent variable, team members filled out a daily PERMA (positive emotion, engagement, relationships, meaning, and accomplishment) survey. These well-being scores were predicted using speech features extracted from the videos using machine learning. The results suggest that the proposed toolchain was able to automatically predict individual well-being in teams, leading to better teamwork and happier team members.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.