Abstract

This paper depicts an approach for predicting individual tree attributes, i.e., tree height, diameter at breast height (DBH) and stem volume, based on both physical and statistical features derived from airborne laser-scanning data utilizing a new detection method for finding individual trees together with random forests as an estimation method. The random forests (also called regression forests) technique is a nonparametric regression method consisting of a set of individual regression trees. Tests of the method were performed, using 1476 trees in a boreal forest area in southern Finland and laser data with a density of 2.6 points per m 2. Correlation coefficients ( R ) between the observed and predicted values of 0.93, 0.79 and 0.87 for individual tree height, DBH and stem volume, respectively, were achieved, based on 26 laser-derived features. The corresponding relative root-mean-squared errors (RMSEs) were 10.03%, 21.35% and 45.77% (38% in best cases), which are similar to those obtained with the linear regression method, with maximum laser heights, laser-estimated DBH or crown diameters as predictors. With random forests, however, the forest models currently used for deriving the tree attributes are not needed. Based on the results, we conclude that the method is capable of providing a stable and consistent solution for determining individual tree attributes using small-footprint laser data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call