Abstract
This paper investigates the use and relevance of data mining techniques for online direct marketing. Cookie log files are obtained and transformed into time-aggregated web user characteristics to predict which users are likely to purchase. Given these characteristics, users observe relevant banners. Modern classification techniques, i.e., support vector machines (SVM), random forests (RF), bagging (BA), and boosting (BO), are compared with classic data mining techniques, i.e., multinomial logistic (MNL) regressions, neural networks (NN), and Naive Bayes (NB). We found that, after feature selection, all modern techniques significantly outperform the classic methods NN and NB, accuracy-wise. MNL performs similarly to BO and better than BA. RF performs best with an average accuracy of 70.7%, followed by SVM with an average accuracy of 67.6%. The RF model has led to a decrease in banners served, while preserving the number of sales. Several novel time-related features have also been proposed for online bannering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Web Engineering and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.