Abstract

BackgroundInfectious disease, particularly the fungal disease chytridiomycosis (caused by Batrachochytrium dendrobatidis), is a primary cause of amphibian declines and extinctions worldwide. The transdermal route, although offering a simple option for drug administration in frogs, is complicated by the lack of knowledge regarding percutaneous absorption kinetics. This study builds on our previous studies in frogs, to formulate and predict the percutaneous absorption of a drug for the treatment of infectious disease in frogs. Chloramphenicol, a drug with reported efficacy in the treatment of infectious disease including Batrachochytrium dendrobatidis, was formulated with 20% v/v propylene glycol and applied to the ventral pelvis of Rhinella marina for up to 6 h. Serum samples were taken during and up to 18 h following exposure, quantified for chloramphenicol content, and pharmacokinetic parameters were estimated using non-compartmental analysis.ResultsSerum levels of chloramphenicol reached the minimum inhibitory concentration (MIC; 12.5 μg.mL− 1) for Batrachochytrium dendrobatidis within 90–120 min of exposure commencing, and remained above the MIC for the remaining exposure time. Cmax (17.09 ± 2.81 μg.mL− 1) was reached at 2 h, while elimination was long (t1/2 = 18.68 h).ConclusionsThe model, based on in vitro data and adjusted for formulation components and in vivo data, was effective in predicting chloramphenicol flux to ensure the MIC for Batrachochytrium dendrobatidis was reached, with serum levels being well above the MICs for other common bacterial pathogens in frogs. Chloramphenicol’s extended elimination means that a 6-h bath may be adequate to maintain serum levels for up to 24 h. We suggest trialling a reduction of the currently-recommended continuous (23 h/day for 21–35 days) chloramphenicol bathing for chytrid infection with this formulation.

Highlights

  • Infectious disease, the fungal disease chytridiomycosis, is a primary cause of amphibian declines and extinctions worldwide

  • Percentage of chloramphenicol remaining in the dosing solution / urine decreased over the exposure period, to an average drug content of 75.02% at t = 6 h

  • The isolates were not identified, we suggest that chloramphenicol only be used to treat disease in frogs when the benefits outweigh the risks associated with such perturbation of the skin microbiome, and remind clinicians to be mindful of the alterations to the natural frog microbiome that will occur as a result of such treatment

Read more

Summary

Introduction

Infectious disease, the fungal disease chytridiomycosis (caused by Batrachochytrium dendrobatidis), is a primary cause of amphibian declines and extinctions worldwide. This study builds on our previous studies in frogs, to formulate and predict the percutaneous absorption of a drug for the treatment of infectious disease in frogs. Chloramphenicol, a drug with reported efficacy in the treatment of infectious disease including Batrachochytrium dendrobatidis, was formulated with 20% v/v propylene glycol and applied to the ventral pelvis of Rhinella marina for up to 6 h. Infectious disease in frogs is a primary cause of population declines worldwide [1]. The chytrid fungus Batrachochytrium dendrobatidis has caused mass declines and extinctions in many frog species [2, 3]. Frogs with chytridiomycosis often exhibit secondary bacterial infections [22, 23], and so chloramphenicol presents as an ideal drug candidate for treatment of infectious disease in these animals

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call