Abstract
Dry powder inhaler (DPI) for pulmonary delivery is currently the primary treatment for asthma and COPD (chronic obstructive pulmonary disease), an increasing number of combined DPIs (containing two or more drugs in one inhaler) have been developed to complement the effect of single DPIs. Based on our previous studies, the rheological properties can be a potential tool used to predict the in vitro lung deposition behavior of DPI formulations. However, it is unknown whether such a prediction model is suitable for combination systems. Therefore, this study aimed to verify the applicability of using powder rheological properties to predict in vitro drug deposition behavior in combined DPI formulations. Two drugs (fluticasone propionate and salmeterol xinafoate) and their combination of DPI formulations were prepared using fine lactose content (in the range of 1%-20%) as a variable. The physicochemical properties of the powder mixtures such as particle size and content uniformity were characterized. The rheological properties of the powder mixtures were measured by FT4 rheometer, the aerodynamic behavior of the DPI formulations was evaluated by a new generation impactor (NGI), and the effect of flowability and adhesion on the deposition of the fine particle fraction (FPF) was investigated by principal component analysis (PCA). The results showed that the combined DPI formulations with larger particle interaction forces have certain differences from the aerodynamic behavior of the single DPI formulations. The regularity of rheological properties affecting FPF revealed in single DPI is still applicable to combined DPI, the parameters basic flowability energy (BFE), representing flowability, and flow factor (ff), Cohesion representing adhesion, can be well linearly related to the FPF. The results of the principal component analysis showed that better flowability and suitable adhesion contributed to higher in vitro deposition of the drug in the formulation, and the contribution of adhesion (75.42%) was greater than that of flowability (24.58%). In conclusion, rheological properties is an effective tool for predicting the deposition behavior of DPI not only in single but also in combined DPIs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Pharmaceutics and Biopharmaceutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.