Abstract

The ancient Magnoliaceae family is being seriously threatened by climate change, especially for Yulania trees under threat. Little is currently understood regarding the appropriate geographic range of Yulania zenii, as well as how it has reacted to various climate situations from past to present. Here, we chose MaxEnt for final modeling after first using ten Biomod2 models to approximate its possible distribution in China. The findings indicated that the three main environmental parameters impacting its distribution were the monthly mean diurnal range of temperature, the precipitation seasonality of variation coefficient, and elevation. Currently, its appropriate distribution is primarily in southern Anhui, eastern Hunan, central Hubei, southern Jiangsu, and both northern Jiangxi and Zhejiang. The total suitable area of Y. zenii was found to be 14.68 × 104 km2, only taking up 1.53% of China’s total territory, which is larger than known. During the Last Interglacial and Middle Holocene, its suitable habitats were larger than they are currently, exhibiting a relatively continuous distribution. Under various future climate scenarios, its suitable habitats may averagely decrease by 20.26% compared with the current case, and these habitats may become more fragmented. Collectively, the centroid of Y. zenii is expected to migrate towards the southeast in the future. Therefore, our findings demonstrate, for the first time, that climate change has had an adverse effect on this species in terms of its distribution from the past to the current and into the future. Our study could contribute to the conservation, management, introduction, and cultivation of Y. zenii in China and provide a reference for other endangered Yulania species in this country under the conditions of climate change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.