Abstract

The National Renewable Energy Laboratory has developed a suite of thermal comfort tools to assist in the development of smaller and more efficient climate control systems in automobiles. These tools, which include a 126-segment sweating manikin, a finite element physiological model of the human body, and a psychological model based on human testing, are designed to predict human thermal comfort in transient, nonuniform thermal environments, such as automobiles. The manikin measures the heat loss from the human body in the vehicle environment and sends the heat flux from each segment to the physiological model. The physiological model predicts the body's response to the environment, determines 126-segment skin temperatures, sweat rate, and breathing rate, and transmits the data to the manikin. The psychological model uses temperature data from the physiological model to predict the local and global thermal comfort as a function of local skin and core temperatures and their rates of change. Results of initial integration testing show the thermal response of a manikin segment to transient environmental conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.