Abstract

The Prisoner’s Dilemma has been a subject of extensive research due to its importance in understanding the ever-present tension between individual self-interest and social benefit. A strictly dominant strategy in a Prisoner’s Dilemma (defection), when played by both players, is mutually harmful. Repetition of the Prisoner’s Dilemma can give rise to cooperation as an equilibrium, but defection is as well, and this ambiguity is difficult to resolve. The numerous behavioral experiments investigating the Prisoner’s Dilemma highlight that players often cooperate, but the level of cooperation varies significantly with the specifics of the experimental predicament. We present the first computational model of human behavior in repeated Prisoner’s Dilemma games that unifies the diversity of experimental observations in a systematic and quantitatively reliable manner. Our model relies on data we integrated from many experiments, comprising 168,386 individual decisions. The model is composed of two pieces: the first predicts the first-period action using solely the structural game parameters, while the second predicts dynamic actions using both game parameters and history of play. Our model is successful not merely at fitting the data, but in predicting behavior at multiple scales in experimental designs not used for calibration, using only information about the game structure. We demonstrate the power of our approach through a simulation analysis revealing how to best promote human cooperation.

Highlights

  • The Prisoner’s Dilemma game has been a subject of extensive research due to its importance in understanding the ever-present tension between individual self-interest and social benefit [1,2,3]

  • We develop a predictive model of dynamic cooperation that reliably forecasts behavior across heterogeneous game designs, and analyze this model to tease apart the magnitude and direction of the effects of game design variables on cooperation

  • To make predictions with the dynamic-only model, which will have missing values for the lagged action outcomes at period one, we draw cooperate/ defect actions with equal probability

Read more

Summary

Introduction

The Prisoner’s Dilemma game has been a subject of extensive research due to its importance in understanding the ever-present tension between individual self-interest and social benefit [1,2,3]. Both equations use all the structural game features, r1 + r2 + risk + error + δ + r1 × δ + r2 × δ + infinity + continuous, and because we hypothesized that δ and the payoff variables may have difference effects depending on the values of the other, we interacted them.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call