Abstract
Predict in advance the need for hospitalization of adult patients for fall-related fractures based on information available at the time of triage to help decision-making at the emergency department (ED). We developed machine learning models using routinely collected triage data at a regional hospital chain in Pennsylvania to predict admission to an inpatient unit. We considered all patients presenting to the ED for fall-related fractures. Patients who were 18 years or younger, who left the ED against medical advice, left the ED waiting room without being seen by a provider, and left the ED after initial diagnostics were excluded from the analysis. We compared models obtained using triage data (pre-model) with models developed using additional data obtained after physicians' diagnoses (post-model). Our results show good discriminatory power on predicting hospital admissions. Neural network models performed the best (AUC: pre-model = 0.938 [CI 0.920-0.956], post-model = 0.983 [0.974-0.992]). The logistic regression analysis provides additional insights into the data and the relationships between the variables. Using limited data available at the time of triage, we developed four machine learning models aimed at predicting hospitalization for patients presenting to the ED for fall-related fractures. All the four models were robust and performed well. Neural network method, however, performed the best for both pre- and post-models. Simple, parsimonious machine learning models can provide high accuracy for predicting hospital admission.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.