Abstract
The ability to predict and prevent homelessness has been an elusive goal. The purpose of this study was to develop a prediction model that identified U.S. Army soldiers at high risk of becoming homeless after transitioning to civilian life based on information available before the time of this transition. The prospective cohort study consisted of observations from 16,589 soldiers who were separated or deactivated from service and who had previously participated in 1 of 3 baseline surveys of the Army Study to Assess Risk and Resilience in Servicemembers in 2011-2014. A machine learning model was developed in a 70% training sample and evaluated in the remaining 30% test sample to predict self-reported homelessness in 1 of 2 Longitudinal Study surveys administered in 2016-2018 and 2018-2019. Predictors included survey, administrative, and geospatial variables available before separation/deactivation. Analysis was conducted in November 2020-May 2021. The 12-month prevalence of homelessness was 2.9% (SE=0.2%) in the total Longitudinal Study sample. The area under the receiver operating characteristic curve in the test sample was 0.78 (SE=0.02) for homelessness. The 4 highest ventiles (top 20%) of predicted risk included 61% of respondents with homelessness. Self-reported lifetime histories of depression, trauma of having a loved one murdered, and post-traumatic stress disorder were the 3 strongest predictors of homelessness. A prediction model for homelessness can accurately target soldiers for preventive intervention before transition to civilian life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.