Abstract

Misuse of prescription opioids is a leading cause of premature death in the United States. We use state government administrative data and machine learning methods to examine whether the risk of future opioid dependence, abuse, or poisoning can be predicted in advance of an initial opioid prescription. Our models accurately predict these outcomes and identify particular prior nonopioid prescriptions, medical history, incarceration, and demographics as strong predictors. Using our estimates, we simulate a hypothetical policy which restricts new opioid prescriptions to only those with low predicted risk. The policy's potential benefits likely outweigh costs across demographic subgroups, even for lenient definitions of "high risk." Our findings suggest new avenues for prevention using state administrative data, which could aid providers in making better, data-informed decisions when weighing the medical benefits of opioid therapy against the risks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.