Abstract

AbstractTechnological advancements have made hand‐held near infrared (NIR) spectrometers more affordable and more accurate, creating interest in on‐farm application for forage management. The objective of this study was to evaluate the ability of a hand‐held NIR spectrometer to predict grass percentage within fresh alfalfa (Medicago sativa L.):grass mixtures. Forage samples were collected at a range of maturities and varieties during the 2021 and 2022 growing seasons from multiple locations in New York. Fresh forage samples were chopped, and pure species were combined into known proportions on a dry matter basis, resulting in 534 samples. Analysis was carried out on NIR spectra collected from a hand‐held NeoSpectra spectrometer using stationary and sliding scanning techniques. Development of calibration models was completed using partial least squares regression with cross validation. The best performing calibration model using absorbance was from the sliding scanning technique with preprocessing consisting of mean‐centering (R2 = 0.89, root mean square error of prediction [RMSEP] = 13.7%, and ratio of prediction to deviation = 2.53). A total of 84% of the samples were correctly classified when the grass component was lower than 40%. For samples with the grass component above 40%, a total of 94% of the samples were correctly classified. Correct sample classification is critical considering that the extension recommendation in New York is to reseed alfalfa fields when the grass component exceeds 40% of the sward on a botanical composition basis. This research demonstrates that NIR technology has potential to provide the agricultural industry with rapid, non‐destructive, and affordable information to allow farmers and consultants to predict grass proportion within alfalfa:grass fresh forage mixtures in real time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.