Abstract

Glyphosate [N-(phosphonomethyl) glycine] is the active ingredient in Roundup, which is the most used herbicide around the world. It is a non-selective herbicide with carboxyl, amino, and phosphonate functional groups, and it has a strong affinity to the soil mineral fraction. Sorption plays a major role for the fate and transport of glyphosate in the environment. The sorption coefficient (Kd) of glyphosate, and hence its mobility, varies greatly among different soil types. Determining Kd is laborious and requires the use of wet chemistry. In this study, we aimed to estimate Kd using basic soil properties, and visible near-infrared spectroscopy (vis–NIRS). The latter method is fast, requires no chemicals, and several soil properties can be estimated from the same spectrum. The data set included 68 topsoil samples collected across the South Island of New Zealand, with clay and organic carbon (OC) contents ranging from 0.001 to 0.520 kg kg−1 and 0.021 to 0.217 kg kg−1, respectively. The Kd was determined with batch equilibration sorption experiments and ranged from 13 to 3810 L kg−1. The visible near-infrared spectra were obtained from 400 to 2500 nm. Multiple linear regression was used to correlate Kd to oxalate extractable aluminium and phosphorous and pH, which resulted in an R2 of 0.89 and an RMSE of 259.59 L kg−1. Further, interval partial least squares regression with ten-fold cross-validation was used to predict Kd by vis–NIRS, and an R2 of 0.93 and an RMSECV of 207.58 L kg−1 were obtained. Thus, these results show that both basic soil properties and vis–NIRS can predict the variation in Kd across these samples with high accuracy and hence, that glyphosate sorption to a soil can be determined with vis–NIRS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.