Abstract

The preparation and computation of many properties of quantum Gibbs states is essential for algorithms such as quantum semidefinite programming and quantum Boltzmann machines. We propose a quantum algorithm that can predict $M$ linear functions of an arbitrary Gibbs state with only $\mathcal{O}(\log{M})$ experimental measurements. Our main insight is that for sufficiently large systems we do not need to prepare the $n$-qubit mixed Gibbs state explicitly but, instead, we can evolve a random $n$-qubit pure state in imaginary time. The result then follows by constructing classical shadows of these random pure states. We propose a quantum circuit that implements this algorithm by using quantum signal processing for the imaginary time evolution. We numerically verify the efficiency of the algorithm by simulating the circuit for a ten-spin-1/2 XXZ-Heisenberg model. In addition, we show that the algorithm can be successfully employed as a subroutine for training an eight-qubit fully connected quantum Boltzmann machine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call